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ABSTRACT

Using household data from Lilongwe districts, along with crop phenology,
agronomic management and climatic data from Chitedze Research Station, the
Target-MOTAD and DSSAT-CSM models examined the resource allocation
decisions of smallholder farmers in maize farming systems under climate risk in
Malawi. Specific aims were to evaluate the ability of DSSAT to predict and collate
DTM and non-DTM vyields under climatic risk and to use a bio-economic
procedure developed using DSSAT and Target-MOTAD to explore the impact of
climatic risk on allocation of resources to DTM and non-DTM production. The
paper argues that higher average yields observed from DTM varieties make it the
most optimal maize production plan, in maximizing household incomes, food
security, and minimizing deviations from the mean while meeting the set target
incomes of farmers compared to non-DTM varieties. The multidisciplinary nature
of this paper has contributed to the body of research by providing a powerful
analytical procedure of modelling farmers’ resource allocation decisions in maize
based farming systems in Malawi. This study necessitates the use of a combination
of biophysical and economic procedures when evaluating promising lines prior to
variety release in order to identify the high yielding variety that will continuously
bring sustained profits to the farmers amidst climate change.

Key words: Climate risks, Target MOTAD, DSSAT, smallholder farmers, resource
allocation.

INTRODUCTION
Risks and uncertainties, their effects and how farmers react to those risks are major
perils to smallholder agricultural production in Malawi where farmers lack
information and capacity to predict future weather outcomes (Getnet et al., 2015).
In this paper, risk is viewed as uncertainty embedded in the probable outcomes in
maize production. Maize farmers are exposed to several risks, namely, price,
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market, climate, biological and financial risks (Akhtar et al., 2019). Despite
variability in temperature and rainfall, climate risk arises from extreme weather
events like drought (or dry spell). In this paper, drought is defined as a natural
feature, usually allied with warm and dry weather over an extended period of time
(dry spells) causing less than normal water available on the land surface (Masih et
al., 2014) required for maize growth. As an agro-based economy, scarcity of
climate related data in Malawi makes agricultural productivity to be very unstable
for rural smallholder farms.

Analysis of climate risk is very important in agriculture because climatic risks
influence smallholder farmers’ decisions to allocate resources to agricultural
production (Masih et al., 2014). However, in Malawi, limited research has been
conducted that links climate related risks to agricultural resource allocation
decisions in smallholder maize farming systems. Understanding the decision-
making process of smallholder farmers under climate risk is critical for the
development of novel strategies like climate-smart agriculture (CSA) for
improving farm outputs. CSA is embedded in sustainable agriculture and rural
development which, if reached, would contribute towards achieving the
Sustainable Development Goals (SDGs) of lowering hunger, and improving
management of the environment. Drought tolerant maize (DTM) is one example of
technologies promoted under CSA (Lipper et al., 2014). Sub-Saharan African
(SSA) countries like Malawi, have progressed considerably in the use of improved
maize varieties like DTM (Lipper et al., 2014). DTM is a focal point of this study
since it is promoted under CSA in Malawi due to the importance of maize as a
major food crop in many Malawian households.

Experimental research has studied the impacts of climatic risks on an array of
major crops. The experimental models are used because they provide a systematic
means to map variations in climatic and other environmental inputs (Ngwira et al.,
2014). Yet, they are nearly not capable of capturing the linkage between climate
related risks and farmer resource allocation as they implement adaptation practices
(Karali et al., 2013). This study enhances understanding of intricate relationship
between economic and ecological aspects at farm level through coalescing
information from both biophysical models (like DSSAT) and mathematical
programming (MP). The objectives of the paper are (1) to evaluate the ability of
DSSAT to predict and collate DTM and non-DTM yields under climatic risk and
(2) to use a bio-economic procedure developed using DSSAT and Target-MOTAD
to explore how climatic risk influence allocation of resources to DTM and non-
DTM production in the sampled region

MATERIALS AND METHODS
Study Site
The study used a farm from Chitedze Research Station in Lilongwe due to the
availability of observed DTM and non-DTM maize data and daily rainfall and
temperature data required for the analysis.
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Decision Support System for Agro-Technology Transfer (DSSAT) Cropping
Systems Model (CSM)

The CSM-CERES-Maize module (Jones and Kiniry, 1986) was used and is based
on the effects of weather, soil characteristics and crop management practices. The
drought tolerant SC 403 and non-drought tolerant MH 18 from the sampled
experimental field were used. To evaluate the biophysical model, the CERES-
Maize model requires six genetic coefficients that govern the life cycle and
reproductive growth of maize varieties as provided in Table 1 for the varieties.

Table 1. Calibrated genetic plant growth coefficients of maize varieties used in
CERES-Maize model for SC403 (DTM) and MH 18 (Non-DTM)

Coefficient Description SC MH
403 18
P1 Thermal time (degree days above the base 235.0 245.0

temperature of 8°c) from seedling emergence to
the end of juvenile stage.

P2 Photoperiod sensitivity associated with delayed 0.27 0.28
growth under unfavourable long day length
condition (no unit)

P5 Thermal time from silking to physiological 800.0 843.0
maturity (degree days above the base temperature
of 8° in the maturity stage)

G2 Potential maximum number of kernels per plant 630.0 417.3

G3 Kernel filling rate under optimum condition 7.0 7.87
(mgd-1)

PHINT Interval in thermal time between successive leaf 38.90  75.0

appearance (degree days above a base
temperature of 8°c)

*Source: Ngwira et al., 2014; Tesfaye et al., 2015

Statistical Analysis

The Root Mean Square Error (RMSE) and mean percent difference (MPD —
obtained as the mean of %D) were used to evaluate the performance of DSSAT
(Ngwira 2014).

2
RMSE = [(n—iz(YEEIdsimulated — Yield ﬂbserved)) ]

%D = |Yieldobser?ed il Yieldsimuiated] £100
\ o Yieldopservea _
The RMSE value of zero indicated the goodness of fit between simnulated and
observed data. High values of D that are close to 1 indicate good model
performance and better relation of observed versus simulated yields.

0.5
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Target MOTAD Model to Determine the Optimal Production of Maize

The Target MOTAD was used to determine optimal resource allocation in the
production of maize. Type of maize has been specified according to drought or
non-drought tolerance. The main activities in the Target-MOTAD model include
maize production related with three states of nature, seasonal labour used, maize
crop sales and capital used in maize production. The model defines several
constraints that are faced by a maize farmer such as limited amount of land and
labour use, limited cash for input purchase using the available resources at farm
household and the states of nature related to climate risk. The model was run in the
General Algebraic Modelling System (GAMS) software (Version 25.0.2). Table 2
presents the three states of nature related to climate risk from Chitedze research
station. The results indicate that both rainfall distribution and rainfall amount are
average in the study area for about 75% of the times. Furthermore, about 12.5% of
the times, rainfall distribution was bad while rainfall amount was average and for
the other 12.5% of the times rainfall distribution was average whilst amount of rain
was poor. The data used to compute the probabilities in Table 2. relates to daily
rainfall data collected between 2006 and 2016 at Chitedze Research Station.

Table 2. States of nature linked to weather risk at Chitedze Research Station

Rainfall amount

Rainfall distribution Poor Average Good
(413.6<R*<620.5) (620.5<R*<1034.1) (R>1034.1)

Bad (SD*>121.7) Not applicable 0.1 Not applicable

Average 0.1 0.8 Not applicable

(73<SD*<121.7)

Good (SD*<73) Not applicable Not applicable Not applicable

Key: SD* = standard deviation for rainfall amount; R* = Rainfall amount (mm).
*Source: Chitedze Research Station Meteorological Service Department (2017)

The Objective Function
The Target MOTAD model followed Tauer (1983) and was set as follows.

3 2
Max (Z) = Z Z[E(Cd;)(xd,-)]
d=1j=1
Where; E(Cy4;)(xa;)] is the expected gross margin in MK for maize category j in
rainfall state of nature d grown under the rain-fed condition, Cd}- is the gross
margin per ha, x4; is the crop acreage, d is the 3 rainfall states of nature namely;
good, average and poor as classified from the rainfall monthly data from 2006 to
2016 and j = 1,2 is DTM and non-DTM maize categories whose yields were
simulated from the DSSAT crop model

89



AGROFOR International Journal, Vol. 6, Issue No. 1, 2021

Constraints

Labour Constraint

The amount of labour required per hectare to produce maize crop type j in rainfall
state of nature d under rain-fed conditions is specified as

3 2
Z Zla}-xd}- < Wd (] = 1,2)
d=1 j=1

Where; W, is the amount of labour in man-days that is available in rainfall state of
nature d, lg; is the amount of labour in labour hours required to produce one
hectare of DTM and non-DTM maize crop type (j) under rain-fed conditions,
xq; is the amount of land allocated to activity j measured in hectares

Land constraint

The specification of the land constraint is as follows:

3 2
Z Zhdjxd}- < Ld (] = 1,2)
d=1 j=1

Lg is all the land available for cropping while hy; is all the land area required to
produce per hectare of maize crop type j in rainfall state of nature d

Capital constraint

3 2
ZZrdedj < Rd (] = 1,2)

d=1j=1
This constraint represents (r;) the amount of cash capital measured in Malawi
Kwacha deflated by year 2012 which is the base year required to produce per
hectare of maize crop type j and R, is the amount of cash capital available at the
start of the cropping season in rainfall state of nature d.

Maize self-sufficiency constraint

Estimation of the maize self-sufficiency constraint was based on the annual maize
requirement of each member of the household according to their ages.

3 2
Z me;xdj >F,(i=12)
a=1j=1

Where; f; is the yield of maize produced per hectare of maize crop type j in kg/ha
while F, is the annual amount of maize required for the household in kg in rainfall
state of nature d

Negative deviation from a pre-specified target revenue constraint

This constraint is presented as:

3 2
> ) copd;+ Y =T forallk

d=1j=1
Where; Y, are the deviations below target income during rainy season for the k"
state of nature. T represents target income during the rainy season. The states of
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nature are defined as a particular set of probabilities representing years of good,
average, and poor rains during the year of crop simulations.

Sum of negative deviations multiplied by the probabilities of the states of
nature constraint

Tauer (1983) considered that during the planning period of a decision maker,
perception of risks entails that the total deviations have to be confined to a specific
value. Hence, to define this aspect of risk perception, he equated the sum of the
product of probabilities of each states of nature and the deviation associated with
the appropriate state of nature as specified below;

3
z PeYie <A
k=1

Where; K is the number of states ot:nalure, P is the probability of the k" state of
nature; and 4, a risk parameter represents the sum of expected negative deviations
below the target income in MK.

RESULTS AND DISCUSSION
Evaluation of Simulated DTM and non-DTM
The evaluated CERES-Maize model verified a good agreement between observed
and simulated grain yield data (Table 3). The model methodically simulated maize
grain yield for all treatments with differences ranging from -5.3 to 9.6%, 2.8 - 10%,
-2.1t0 -16.7%, 4.6 - 5.2% and 4.6 - 5.2% for 2006 —2007, 2007-2008, 2008-2009,
2011-2012 and 2014 — 2015 growing seasons respectively. Overall, the RMSE
were found to be 758.3 kg ha™ 394.2 kg ha™ 458.9 kg ha™ 402.2 kg ha™ and 570.0
kg ha® for 2006-2007, 2007-2008, 2008-2009, 2011-2012 and 2014-2015
growing seasons, respectively as shown in (Table 6.1). Similarly, MPD were found
to be as 4.7 %, 6.4%, 2.4%, 8.5% and 0.1% for 2006-2007, 2007-2008, 2008—
2009, 2011-2012 and 2014-2015 growing seasons, respectively. This comparison
shows that the model has the potential to simulate maize yield for an independent
data set of the given years. Therefore, performance of CERES-Maize model was
acceptable under a given set of conditions. As such, the model was used for further
decision-making on maize variety choices.
Prediction of Maize Grain Yield
Predicting maize grain yield necessitates developing and fine-tuning the promoted
maize varieties in Malawi (Ngwira et al. 2014). Results in Table (4) divulge
significant differences (P< 0.01 — p<0.05) between DTM and non-DTM vyields
from years 2006 to 2007 and 2011 to 2015. Mean maize yields for DTM were more
than non-DTM from 2006 to 2014. The differences were much higher (>20% ha™)
in years 2006, 2007 and 2014 by 22.19% ha™, 27.80% ha™ and 24.34% ha™
respectively. These findings concur with the findings of Tesfaye et al. (2018) who
reported more yields for DTM compared to other maize varieties that lacks heat
tolerance genes.
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Table 4. Simulated maize grain yield (kg) for DTM and Non-DTM, Chitedze
Research Station

Maize 200 2007 2008 2009 2010 2011 2012 2013 2014 2015
Type 6

DTM 5382 5904 4309 4339 42646 4790 5021 5238 5052 4134

Non- 4188 4263 4280 4217 40340 4023 4582 4230 3822 4333
DTM
P- 0.000 0.000 0919 0704 0.490 0.002 0.041 0.004 0.000 0.000
value

Target-MOTAD Analysis Simulated DTM and non-DTM under Alternative
Rainfall Scenarios

Risky Neutral Situation

Under the risk neutral case, the higher marginal value of MK551,500.00 imply that
the resource has a bigger marginal effect on the objective function. Likewise, the
slack of MK40, 000 and 68.28 labour hours is clear evidence that not all capital
and labour were used respectively. The maize sufficiency requirement had no
effect on the objective function due to its zero marginal value.

Table 5. Optimal resource levels from the risk neutral case

Resource Value Used Unused Marginal value (MK)
Land (ha) 2.1 2.10 0.0 551,500.00
Capital (MK) 250.000.00 210,000.00 40,000 0.0
Labour (man hours) 1400 1331.72 68.28 0.0
Marginal
Maize sufficiency  Maize value
requirement (kg)  produced (MK)
Bad-average 3,000 0.0
Poor-average 3,000 0.0
Average-average 3,000 0.0

Risky Situation

Risk was introduced in the optimization problem as the negative deviation from
mean income following Watts et al., (1984) by varying target income to assess the
negative deviations from the mean (risk levels) to achieve the third objective and to
test the third hypothesis. The target income used for this analysis has been
calculated as the annual income needed to cover fixed costs. These include those
variable costs not already accounted for in the calculation of net returns i.e. the cost
of basic food commaodities e.g. salt, sugar, relish etc. A set of 10 efficient farm
plans (Table 6) was obtained by parameterising the level of risk (deviations from
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mean income) from MK 48,706.20 average deviation to MK5,411.77 (Table 6).
These farm plans maximise expected income for a given risk level, subject to
minimised negative deviations from the target income. The variations in risk and
optimal solutions are obtained until all feasible possible changes occur, and the
value of expected income cannot be improved by increasing the level of risk. The
Target MOTAD solutions (Table 6) indicate that at higher target income levels, the
risk is also high. Furthermore, land was constantly allocated to DTM at all risk
levels and they attracted the same mean income despite the state on nature. The
results imply that with the target income met, farmers have optimally achieved the
3000kg annual food requirement, thus achieving their household food security.
These results lead to a conclusion that farmers must allocate all their resources
(land, capital, and labour) to DTM when risk increases regardless of the state of
nature. These findings concur with the findings of Tesfaye et al. (2018) who
reported more yields for DTM compared to other maize varieties that lacks heat
tolerance genes.

Table 6. Trade-offs between risk (negative deviations from target income) and
mean income, with associated enterprise combinations-Target-MOTAD Model

Farm  Mean Income Target income >  Negative Enterprise Mix (ha)
Plan (MK) (MK) Deviations

(@) from

mean Income

DTM Non-DTM

1 1,158,142.01 1,028,242.00 48,706.20 2.10 0.00
2 1,158,142.01 974,124.00 43,294.40 2.10 0.00
3 1,158,142.01 920,006.00 37,882.60 2.10 0.00
4 1,158,142.01 865,888.00 32,470.80 2.10 0.00
5 1,158,142.01 811,770.00 27,059.00 2.10 0.00
6 1,158,142.01 757,652.00 21,647.20 2.10 0.00
7 1,158,142.01 703,534.00 16,235.40 2.10 0.00
8 1,158,142.01 649,416.00 10,823.60 2.10 0.00
9 1,158,142.01 595,298.00 5,411.77 2.10 0.00
10 1,158,142.01 541,180.00 0.03 2.10 0.00

Note: [J is the maximum allowable income deviation from the target (the risk
aversion coefficient)

Figure 1 below shows the Target-MOTAD risk income frontier at all levels of
target income. According to the figure, higher levels of expected incomes are
associated with higher negative deviations (risks). This means, along the graph, a
maize farmer will maximize profits despite higher levels of risks. This implies that
regardless of which state of nature, farmers who grow DTM are expected to get
higher profits which will be even higher at higher risk levels.
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Figure 1. Efficient set of expected income and negative deviation from mean
income on a maize farm

CONCLUSION

The validation of DSSAT model was successful since it was able to simulate the
maize yields adequately thus mimicking what is happening on the ground. The
study has further shown that adoption of DTM in climate risk prone areas might
prepare smallholder farmers for the coming future threats of climate variability
during bad years to improve food security situations in their areas. From the
simulated maize yields for DTM and non-DTM, the performance of maize was
largely affected by climate since the agronomic practices were followed as
required. Finally, the use a bio-economic procedure developed using DSSAT and
Target-MOTAD has exhibited a methodological contribution to the growing body
of academic literature on climate variability and agricultural economics. For
instance, while few economic models explicitly consider risk in the objective
functions, they slackly assume normal distribution of climatic variables such as
rainfall and temperature. Using the case of Chitedze research, the Target-MOTAD
model incorporates farmers risk attitude and rainfall distribution to assess farmer’s
resource allocation decisions in response to climate variability by considering three
important issues; the farmers risk attitude, the use of simulated maize yields from
DSSAT plus incorporation of three states on nature that captured rainfall
distribution and amounts.
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