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ABSTRACT 
Long-term structural dynamics of shrub layer of temperate oak forest communities 
were not extensively reported in published studies. The serious oak decline was 
first reported in 1979-80 and nowadays 63.0% of canopy oak trees died in a forest 
stand. The data were used to obtain (1) quantitative information on shrub layer 
growth, including height (H) and shoot diameter (DSH) condition and basal area 
(BA) values; (2) structural information on foliage cover rate of the shrub layer, 
mean cover of some shrub species; (3) comprehensive description from the 
ecological processes in the shrub layer in the last 45 years and our objective was 
(4) to analyze the possible effects of oak decline on the shrub growth dynamics. 
The following measurements were carried out in the 48 × 48 m plot: shoot height, 
shoot diameter, basal area and foliage cover of each individuals in the high shrub 
layer. Correlation analysis confirmed that significant positive relations were 
between mean H, mean DSH of the dominant woody species (Acer campestre, 
Acer tataricum and Cornus mas) and oak tree density between 1972 and 2017. The 
decreasing oak tree density did not show detectable impact to the co-dominant 
shrubs growth. There was a low significant association between number of oak 
trees and basal area of high shrub layer. Finally, there was a statistically significant 
interaction between mean cover of A. campestre and C. mas and oak trees. The 
findings of the study indicate that forest responded to oak decline with significant 
structural rearrangement in the shrub layer.  
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INTRODUCTION 
Shrub layers of forests change dynamically and respond sensitively to the 
environmental changes (Chipman and Johnson, 2002; Rees and Juday, 2002). They 
are strongly related to the structure and composition of the tree layer (De Grandpré 
et al., 1993; Klinka et al., 1996). Understory plants are important components of 
forests because shrubs play a crucial role in the cycles of some essential nutrients, 
including the dynamics of N, K and carbon (Gilliam, 2007). The shrub layers of 
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forests are directly contributes to the forest biodiversity (Kerns and Ohmann, 2004; 
Aubin et al., 2009), enhancing the aesthetics of forest ecosystems and helping to 
protect watersheds from erosion (Alaback and Herman, 1988; Muir et al., 2002). 
Shrubs can mitigate forest decline and influence forest regeneration through 
affecting light availability (Kunstler et al., 2006). On the other hand, tree and shrub 
individuals may compete for resources such as light, nutrients, or water during later 
stages of development (Wang et al., 2016). The shrub’s cover may also vary along 
with the changes in tree density (Hallinger et al., 2010). 
Serious oak decline was first reported in 1979–80 from our study site, heavily 
affecting Quercus petraea Matt. L. (sessile oak) individuals, and by 2017, 62.9% 
of canopy oak trees had died (from 816 living trees to 303 trees ha-1). An increase 
in the decline of living oak trees was reported in many regions of Hungary since 
1978 (Kotroczó et al., 2007). Many biotic and abiotic factors have been identified 
as important in oak decline events, such as extreme weather conditions (Drobyshev 
et al., 2008; Bolte et al., 2010), insect fluctuations (Moraal and Hilszczanski, 
2000), disease outbreaks (Mistretta, 2002) or climate change, air pollution and fires 
(Signell et al., 2005; Kabrick et al., 2008). The resulting changes in the forest stand 
were described in many papers (Jakucs, 1988; Kotroczó et al., 2005; Mészáros et 
al., 2011; Misik et al., 2014, 2017).  
Few published papers have investigated the long-term dynamics and structural 
changes in the understory shrub layer of deciduous oak forests (Alaback and 
Herman, 1988; Chapman et al., 2006; Gracia et al., 2007; Gazol and Ibáñez, 2009; 
Chapman and McEwan, 2016). Our comprehensive investigations play a gap-
filling role. 
The research data were used to obtain (1) quantitative information on shrub layer 
growth, including height (H) and shoot diameter (DSH) condition and basal area 
(BA) values relation with oak tree density; (2) structural information on foliage 
cover rate of the shrub layer, mean cover of some shrub species relation with oak 
tree density; (3) comprehensive description from the ecological processes in the 
shrub layer in the last 45 years and our objective was (4) to analyse the possible 
effects of oak decline on the shrub growth dynamics. 
 

MATERIAL AND METHODS 
The 24ha reserve study area is located in the Bükk Mountains of northeast Hungary 
(47°55′ N, 20°46′ E) and at an altitude of 320–340 m above sea level. Descriptions 
of the geographic, climatic parameters, soil conditions, and vegetation of the forest 
were reported in detail by Jakucs (1985, 1988). The most common deciduous forest 
association in this region is Quercetum petraeae-cerridis Soó 1963 (sessile 
oak−Turkey oak) forest with a dominant canopy of Q. petraea and Quercus cerris 
L. (Turkey oak). Both oak species are important dominant, native tree in Hungarian 
natural woodlands. 
Monitoring activities started in 1972 and it was repeated in 1982, 1988, 1993, 
1997, 2002, 2007, 2012 and finally in 2017 in the growing seasons. The shrub layer 
was divided into a low and a high sub-layer in the 48 × 48 m monitoring plot. 
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Specimens which were higher than 1.0 m were categorized as high shrubs. Lower 
specimens were categorized as low shrubs. The term "dominant woody species" is 
used to refer to the Acer campestre L. (field maple), Acer tataricum L. (Tatar 
maple) and Cornus mas L. (European cornel) that play a key role in the understory. 
Several size variables of each high shrub specimen in the sampling plot were 
determined. Plant height (H) was measured with a scaled pole and shoot diameter 
(DSH) at 5.0 cm above the ground with a digital caliper. Total basal area of the 
high shrub layer and of high shrub species was calculated based on the shoot 
diameter values (BA, m2 ha-1). Mean cover of high shrub species and actual foliage 
cover of high shrub layer were calculated in m2 and in the latter case expressed in 
percentage of the permanent sampling area. The foliage map was built in a GIS 
environment (ESRI, 1999). Based on the digitized map we estimated the foliage 
cover values with the Spatial Analysis Tools - Calculate Area function of the GIS. 
Statistical regression analysis was performed using the PAST statistical software 
and significant differences for all statistical tests were evaluated at the level of *P < 
0.05; **P ≤ 0.01. There was no significant correlation found between the test 
variables at n.s.P ≥ 0.05. 
 

RESULTS AND DISCUSSION 
Mean height and diameter, basal area of shrub species and of shrub layer, foliage 
cover and other importance values of understory shrub layer are given in Table 1 
and in Table 2. Mean H of dominant woody species in the shrub layer increased 
considerably after the start of the oak decline; these species reached maximum 
below 3.0 m in height before the oak decline and were growing suddenly after 
1982 and were measured between 5.3-8.7 m in height to 2017. Mean H of the co-
dominant shrubs increased from 1.8 m to 2.4 m until 1997, after which it started to 
decrease again. Mean DSH of these species increased from 1.5 cm to 2.9 cm; 
however, after 1993, the mean values started to decrease. BA of the understory was 
only 0.005 m2 ha-1. After the decline, already in 1982, a considerably increase in 
the high shrub layer’s BA was found, and this continued in the following observed 
years. The biggest total BA was recorded in the second last measuring with 11.66 
m2·ha-1. The rate of maples species and C. mas BA together in the total BA was 
higher than 89.0%.  
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Table 1. Long-term tendency of the mean size values (±SD) in the high shrub layer. 
 

year 

height (m) diameter (cm) 

A. 
camp. 

A. 
tatar. 

C. mas 
co-

dom. 
shrubs 

A. 
camp. 

A. 
tatar. 

C. mas 
co-

dom. 
shrubs 

1972 2.29 2.68 2.36 1.75 2.60 2.41 2.45 1.48 
1982 4.83 3.43 3.64 2.21 5.20 3.39 3.95 1.91 
1988 4.85 3.52 3.69 2.25 6.11 3.57 4.44 2.36 
1993 5.20 3.37 3.81 2.34 6.63 4.69 5.68 2.92 
1997 5.21 3.75 3.87 2.37 6.83 4.63 4.89 2.46 
2002 5.88 4.22 4.66 2.14 8.61 5.36 6.43 2.33 
2007 8.23 4.92 4.85 1.96 11.03 6.45 7.82 2.19 
2012 7.60 5.50 5.37 1.82 10.63 7.4 7.50 1.94 
2017 8.74 5.31 5.26 1.86 9.61 6.08 6.95 2.00 

mean±SD 
5.87 

±2.02 
4.08 

±0.97 
4.17 

±0.96 
2.08 

±0.23 
7.47 

±2.75 
4.89 

±1.61 
5.57 

±1.79 
2.18 

±0.41 

 
The regression analysis confirmed that significant positive relations were between 
mean H of maples species and decreasing oak tree density (r = 0.77* and 0.72*) 
between 1972-2017. This relation between canopy tree density and mean H of C. 
mas (r = 0.82**) and mean DSH of dominant woody species (r = 0.84**, 0.80**, 
0.84**) was stronger (Fig. 1. A, B). The relationship was non-significant between 
oak density and mean sizes of co-dominant shrub species (r = 0.25n.s. and 0.62n.s.).  
 

Table 2. Long-term tendency of the mean cover, foliage canopy and basal area 
values (±SD) in the high shrub layer. 

year 

mean cover (m2) 
foliage 
canopy 

(%) 

basal area (m2 ha-1) 

A. 
camp. 

A. 
tatar. 

C. 
mas 

A. 
camp. 

A. 
tatar. 

C. mas 
high 
shrub 
layer 

1972 2.79 1.87 2.45 64.40 0.17-2 0.13-2 0.13-2 0.48-2 
1982 4.06 3.19 4.14 85.30 1.85 0.30 0.90 3.13 
1988 5.59 3.32 5.21 84.16 2.18 0.19 0.89 3.40 
1993 6.88 4.47 7.93 74.00 1.97 0.28 0.91 3.49 
1997 7.23 3.20 5.66 79.50 3.00 0.34 1.38 5.30 
2002 6.22 5.58 7.18 67.50 4.19 0.42 1.54 6.85 
2007 11.54 9.71 12.44 86.20 4.69 0.35 2.18 7.99 
2012 6.12 4.29 6.39 61.48 6.35 0.57 3.92 11.66 
2017 12.34 9.97 12.67 91.26 5.16 0.31 1.66 8.04 

mean±SD 
6.97 

±3.14 
5.07 

±2.90 
7.12 

±3.48 
77.09 

±10.68 
3.27 

±1.99 
0.31 

±0.16 
1.49 

±1.10 
5.54 

±3.48 
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A)        B)  

 
 
Figure 1. Relationship between oak tree density and (A) mean height, (B) mean 
diameter of the dominant woody species between 1972–2017. [A. campestre −−. 
(A) R2 = 0.60, P < 0.05; (B) R2 = 0.70, P ≤ 0.01; A. tataricum ···, (A) R2 = 0.51, P 
< 0.05; (B) R2 = 0.64, P ≤ 0.01; C. mas - - - , (A) R2 = 0.68, P ≤ 0.01; (B) R2 = 
0.70, P ≤ 0.01] 
 
The analysis did show a significant relation for maples species (r = 0.79*, 0.74*), 
for E. verrucosus (r = 0.75*) and for high shrub community (r = 0.77*) between 
BA values and decreasing oak tree density (Fig. 2. A). Over last 45 years; the 
association is non-significant for BA of C. mas (r = 0.65n.s.). Low significant 
relationship are observed between mean cover of A. campestre, C. mas and oaks 
density (r = 0.70* and 0.68*) (Fig. 2. B). Changes of mean cover of A. tataricum (r 
= 0.57n.s.), co-dominant shrubs (r = 0.58n.s.), foliage cover of the high shrub layer (r 
= 0.20n.s.) and oak decline for the long-term study are found to have a non-
significant relationship. According to Röhrig and Ulrich (1991) A. campestre is a 
relatively drought tolerant species. On the other hand, maples have got "Oskar"-
strategy (Silvertown, 1982). Maples typically develop a “sit-and-wait” strategy so 
they wait for example for the canopy decline events. Oaks cannot successfully 
compete with these species (McDonald et al., 2002, Zaczek et al., 2002). Our 
results support these statements, because in our site maples showed a significant 
increase in size and foliage cover after the oak decline. In the upland oak forest of 
USA the total basal area in the understorey was substantially higher in 2002 than in 
1934, increasing from 0.9 to 3.6 m2·ha–1, while the density of most oaks and 
shortleaf pines in the canopy decreased (Chapman et al., 2006). We found similar 
tendency in Síkfőkút. Our findings confirm that long-term DSH changes of the 
dominant woody species and size values of A. campestre most significantly 
associated with oak decline (Fig. 1., 2.). 
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A) B) 

 
 
Figure 2. Relationship between oak tree density and (A) basal area, (B) foliage 
cover changes in the shrub layer between 1972–2017. [A. campestre −−. (A) R2 = 
0.63, P < 0.05; (B) R2 = 0.49, P < 0.05; A. tataricum ···, (A) R2 = 0.55, P < 0.05; E. 
verrucosus - - - , (A) R2 = 0.56, P < 0.05; high shrub layer - 

• - • - (A) R2 = 0.60, P 
< 0.05; C. mas - - - , (B) R2 = 0.46, P < 0.05] 
 

CONCLUSION 
Our study suggests that (1) dominant woody species growth was significantly 
affected by serious oak decline; this association was higher to the DSH values of 
these species. (2) Decreasing density of canopy oak trees was significantly affected 
on the long-term trend of basal area of maples species and E. verrucosus. The 
association was similar to the high shrub community. (3) A significant relationship 
between mean cover of A. campestre and C. mas and oak tree density was observed 
for the 45 years in the studied forest stand. Overall, the shrub layer condition and 
growth dynamics consistently associated with canopy oak mortality. 
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